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Outline of talk 
 Dose measurement error: why does it matter? 
 How does measurement error arise in medical and 

occupational studies? 
– Shared vs unshared errors 
– Berkson vs classical error 

 Regression calibration methods 
 Full likelihood methods 

– Monte Carlo Maximum Likelihood 
– Bayesian Markov Chain Monte Carlo (MCMC) 

 Bayesian MCMC and regression-calibration 
methods applied to latest Japanese A-bomb 
mortality data (UNSCEAR 2006 report) 

 Conclusions 



Dose measurement error: why 
does it matter? 

 Dose measurement error is an inescapable part of 
the dose assessment process via reading of film 
badges, dose-rate meters etc 

 Dose measurement error (particularly classical 
measurement errors, as we shall see), biases trends 
with dose towards null, leading to underestimation 
of radiation risk 



Shared vs unshared errors 

 Often assumed that errors in dose for each 
individual are independent (unshared error) 

 In some situations there can be common 
component in errors in dose between individuals 
(shared error) 
– Errors in the yields of the Hiroshima or Nagasaki 

bombs, shielding factors 
– Errors in factors used to convert “recorded doses” to 

organ doses in nuclear worker studies 
 



Impact of shared errors 

 Simplest situation: 
 Error shared by all subjects 
 Expected value of the estimated dose = K x true dose 
 Estimates of linear risk coefficients biased by a factor K 
 Desirable to include uncertainty in K in confidence 

intervals 
 More complex situations: 
 Expected value of the estimated dose depends in a 

complicated way on the true dose and several uncertainly 
estimated parameters 

 Various subsets of subjects share different errors 
 

 



Berkson dose measurement error 
(grouping error)  

 Error is independent of observed dose 
 In epidemiology Berkson errors arise when average 

dose for group of subjects is used as dose estimate 
for all members of that group 

 Variance of true doses larger than variance of 
measured doses 

 Little distortion in linear dose-response 



Berkson dose measurement error 
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Example of Berkson measurement 
error 
 In radiotherapy, radiation doses, Wi,  are 

estimated with reference to the physical 
parameters of the machine (voltage of X-ray 
set, filtration etc): the actual dose received by 
the patient, Xi, will vary at random around this 
value, so that Wi =E[Xi | Wi] (i.e., Berkson 
error model), although the distribution of true 
dose can be markedly skew. 



Classical dose measurement error  
 

 Error is independent of true dose 
 Can be thought of as error that arises from an 

imprecise measuring device  
 Variance of estimated doses larger than variance of 

true doses 
 Adjustment needed to avoid attenuation of the true 

dose-response 
 



Classical dose measurement error 
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Example of classical measurement error 

 In Japanese atomic bomb survivors, radiation 
doses are estimated using estimates of position 
of survivors in each city, orientation with 
respect to bomb and other shielding structures, 
e.g., buildings. In this case estimated doses, Wi, 
thought to be lognormally distributed around 
true doses, Xi, so that  Xi =E[Wi| Xi] (i.e., 
classical error model)(Jablon TR 23-71 1971) 

 NB: some aspects of A-bomb dosimetry (errors 
in source term, shielding) imply component of 
Berkson error, shared error (Pierce et al Radiat Res 170:118-
36;2008) 



Regression calibration methods 
used to model measurement errors 
 1st order regression calibration (Carroll et al. Measurement 

error in nonlinear models: a modern perspective, Chapman & Hall 
2006): relatively simple to apply 

 Replace true dose Xi with its expectation with 
respect to observed dose  

 E[Xi |Wi ] in all regression equations 
 Only uses 1st order terms in Taylor expansion 

(Rosner et al. Stat Med 8:1051-69;1989, Carroll et al. 2006): does 
not take account of full variability 

 When dosimetric errors not too great, variability 
not taken into account modest 



Advantages of regression 
calibration 

 

 Relatively simple to implement: once plug-in 
estimates E[Xi |Wi ] are calculated, can substitute into 
normal statistical software 

 At least when dose errors are modest the amount of 
variability not taken into account is relatively modest 

 Provides unbiased estimates of risk for linear disease 
models and “almost” unbiased estimates for non-
linear models 

 In almost all cases provides good tests of the null 
hypothesis of no radiation effect, but upper confidence 
limits may be underestimated 



Disadvantages of regression 
calibration 

 

 Does not take full account of uncertainty distribution 
(unlike full-likelihood methods (Bayesian MCMC, 
Monte Carlo maximum likelihood)): this may matter 
when both dose errors are large and when risks are 
large 

 Unlike Bayesian MCMC, models do not give 
feedback from disease model to dose estimates 
 



Full-likelihood methods 

 Full-likelihood methods use number of linked 
probability models 

 Two main types 
– Bayesian Markov Chain Monte Carlo 
– Monte Carlo Maximum Likelihood 

 As outlined by Clayton (Stat Med 7:819-41;1988) must 
specify three linked models (components of 
likelihood) 
– Disease model linking disease, “true” dose and other 

variables 
– Dose model linking “true” dose to observed dose 
– Exposure model specifying true dose distribution (i.e. 

structural model) (not always needed) 
 



Bayesian MCMC methods 

 Fundamental to Bayesian approach is that model 
parameters (γk), missing data, treated as if random 

 Need to specify prior distributions for parameters: 
most often choose vague (uninformative) priors 
 



Complete likelihood 
 

 Obtain complete likelihood by putting together 
these components 

 Likelihood = Prob[disease|true dose] 
   × Prob[observed dose|true dose] 
   × Prob[true dose] 
 
 
 



Monte Carlo maximum likelihood 
 

 Basic idea: integrate likelihood over unknown 
parameters (true dose, etc), to get marginal 
likelihood 

 One can then perform inference (via maximum 
likelihood on unknown model parameters) in 
normal way   

 In general integrations are analytically intractable 
 The integrations are generally performed 

numerically, via random sampling (over true dose 
conditional on observed dose) 
 

 



Bayesian methods: sampling from 
posterior density 

 
 Bayes theorem: 
 Posterior density = C × Prior × Likelihood 
 How to sample from posterior density? 
 How to perform inference on this, e.g., many 

unknown parameters (some possibly nuisance), also 
unknown true doses? What about normalising 
constant C? 

 One approach - integrate out unknown variables (as in 
Monte Carlo maximum likelihood – previous slide) 

 Alternatively, use Markov Chain Monte Carlo 
(MCMC) methods: construct iterative sample of 
parameters that approximates to posterior distribution 



Bayesian methods: Metropolis-Hastings 
sampling from posterior 

 
 Metropolis-Hastings algorithm most flexible 

way of sampling from posterior density 
 Iterative process guaranteed (subject to certain 

regularity conditions) to converge to posterior 
distribution 

 
 



Bayesian methods: assessing 
convergence  

 Although Metropolis-Hastings algorithm guaranteed 
to converge to posterior distribution: how to know 
convergence has happened? 

 Use multiple long chains (different starting values) 
and compare within-chain to between-chain variance 
(Gelman-Rubin statistic) 

 Arguably safer to compare mixing visually 
 alpha[1] chains 1:2

iteration
1 25000 50000 75000 100000

   -1.0

    0.0

    1.0

    2.0

    3.0 Gelman-Rubin statistic = 1.045 (n.s.) 



Full likelihood (Monte Carlo ML, Bayesian 
MCMC) methods implementation  

 Monte Carlo maximum likelihood generally requires 
code to be written in high level language (C++, 
Fortran) 

 Bayesian error models easily specified in WinBUGS, 
JAGS (but both can be slow) 

 These programs have facilities to check convergence 
via Gelman-Rubin plots, autocorrelation plots etc 

 Easy to specify complex error models, e.g., 
combination of Berkson/classical errors, validation 
study 

 Permits modular description of components of model 
via conditional independence relationships 
 



Advantages of full likelihood methods 
(Monte Carlo ML, Bayesian MCMC)  

 Takes full account of uncertainty distribution (unlike 
regression calibration) 

 In Bayesian MCMC uncertainty easily propagated to 
risk (via sample from posterior distribution)(more on 
this later in relation to A-bomb data) 

 In principle easily possible to specify complex models 
(particularly in Bayesian MCMC, via WinBUGS / 
JAGS) in modular way: very suitable for occupational 
and medical studies with complex dosimetry 

 Unlike regression calibration, models give feedback 
from disease model to dose estimates 
 



Disadvantages of full likelihood methods 
(Monte Carlo ML, Bayesian MCMC) 

 Computational time 
 For Bayesian MCMC convergence an issue: can be 

sure it has happened? 
 Generally need to specify distribution of true dose 

(unknown) 
 For Bayesian MCMC need to specify priors (though 

vague priors often used) 
 Dependence on full probability model (unlike 

regression calibration): can be sure this is correct? 
 
 



Application to Japanese A-bomb 
survivors (UNSCEAR 2006, Little et al Radiat Res 169:660-76;2008) 

 Members of Life Span Study interviewed or 
completed variety of questionnaires 

 On basis of answers established survivor positions in 
two cities at time of bombings, orientation with 
respect to point of detonation of bomb, shielding by 
buildings and neighboring structures 

 Using this information various sets of dose estimates 
to survivors calculated (T57D, T65DR, DS86, DS02) 



Application to Japanese A-bomb 
survivors: errors in dose estimates 
 Jablon (ABCC TR 23-71, 1971), Gilbert (Radiat Res 98:591-605;1984) 

and Pierce et al. (Radiat Res 123:275-84;1990) considered 
form of dose errors in A-bomb data 
 Errors arise from number of sources 

 Uncertainties in source term, i.e., bomb yield 
 Uncertainties in radiation transport calculations 
 Uncertainties in shielding by buildings and other structures 
 Incorrect recall of position in cities by survivors 
 Incorrect recall of orientation with respect to bomb by 

survivors 

 10-20% of uncertainty contributed by survivor 
location, 10-15% by survivor orientation 
 



Application to Japanese A-bomb survivors: 
assumptions in dosimetric error modeling 
 Applied to latest mortality DS02 data (Preston et al. 

Radiat Res 162:377-89;2004)  
 Classical dosimetric error model, log-normal 

errors – independent (unshared) errors 
 35% geometric standard deviations (GSD) errors 
 Weibull distribution of “true” dose 
 Vague priors 
 Same assumptions used for regression calibration 

fit (comparison with Bayesian MCMC) 
 These assumptions used by many others (Jablon 

ABCC TR 23-71, 1971, Pierce et al. Radiat Res 123:275-84;1990)  



Solid cancer risk distribution for 2003 UK 
population, LQ vs LQE (ERR, test dose =0.1 Sv) 

(UNSCEAR 2006, Little et al Radiat Res 169:660-76;2008) 

Linear-quadratic-exponential model more widely dispersed risks 
than linear-quadratic, substantial proportion of risk below 0 

Linear-quadratic model Linear-quadratic-exponential model 
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Cancer risks (all % per Sv, REID, current UK 
population) (UNSCEAR 2006, Little et al Radiat Res 169:660-76;2008) 

Solid cancer Leukemia 

UNSCEAR 2000 (D=1.0 Sv, EAR, 
ERR, UK population) 

7.9 − 14.4 0.95 

BEIR VII (D=0.1 Sv, mixed 
ERR/EAR, US population) 

7.95 − 9.8  0.33 − 0.79 

Regression calibration (UNSCEAR 
2006) (D=0.1 Sv, ERR, LQ, UK 
population) 

5.26 0.42 

Bayesian MCMC (UNSCEAR 2006) 
(D=0.1 Sv, ERR, LQ, UK 
population) 

5.45 (90% CI 
3.06 – 7.99)  

0.50 (90% CI 
0.11 – 0.97) 

Bayesian MCMC and regression calibration estimates similar 



Regression calibration (RC) vs Bayesian 
MCMC for A-bomb survivors 

 Both likelihood-based methods 
 1st order RC simpler to implement, given grouped 

nature of A-bomb data 
 1st order RC less computationally intensive (minutes 

vs days) 
 Differences between RC maximum-likelihood (mode) 

vs Bayesian MCMC (mean, median) 
 Bayesian MCMC takes greater account of variability, 

and allows feedback disease model→doses, but when 
dosimetric errors and disease “signal” small, 
variability not taken into account by RC small 



Conclusions 
 

 Regression calibration methods are simple to implement 
and work well when magnitude of dose errors and risk are 
not large 

 Full-likelihood (Monte Carlo maximum likelihood, 
Bayesian MCMC) methods potentially account for more 
uncertainty than regression calibration – but numerically 
intensive 

 Full likelihood methods easily allows for complex 
dosimetry systems, as, e.g., found in many medical, 
occupational studies 

 Bayesian MCMC methods not recommended for A-bomb 
survivor data (problems with grouped data) 

 For A-bomb survivors regression calibration methods 
simpler, less computationally intensive, account for most 
of uncertainty 
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